皇冠登一出租罗索西丝logo

71886699

当前位置:网站首页 > 新闻动态 > 小程序开发资讯

loadgcc(雅可比)迭代可以用CUDA实现,请参考这里

日期:2023-08-13访问量:0类型:小程序开发资讯

注意:[实现(雅可比)迭代可以使用 MPI 或 CUDA 实现。 想要使用CUDA的同学可以参考这里。

1.原理介绍【吃代码之前最好先了解原理】 1.1 公式介绍——可以忽略,这只是一个相关公式,推导过程可以忽略,但要注意最后标注的公式穿蓝色衣服

1.2 根据1.2得出的结论公式,我们可以知道如何计算

1.3 数据集划分

阐明:

MPI采用点对点模式实现雅可比并行计算,而不是一对多模式,因此需要将数据集划分为若干个等长的子数据集,每个进程负责处理一个数据单独设置,使进程与进程之间有一定程度的独立性;

您可以使用行分区或列分区

loadgcc(雅可比)迭代可以用CUDA实现,请参考这里

1.4 处理私有数据

注意,一旦使用了MPI,在程序启动的那一刻,你声明的每个变量、数组等都存在于每个进程中,并且变量名是相同的,所以当你使用MPI时,每个进程的数据矩阵的大小应该是总数据集的[维度/进程数,维度],但由于需要接收边界值,实际数组大小为[维度/进程数+2,维度+2]。

1.5 随机获取进程的执行轨迹

1.6

1.7 边界数据分布 1.8 通信过程 1.9 计算行号范围 2.1 1.0版本(比较容易理解,建议先看一下,虽然这个版本容易出现死锁,但下面有两个改进版本)

这里我就来说说为什么会出现死锁

loadgcc(雅可比)迭代可以用CUDA实现,请参考这里

如果有两个进程在处理数据集,但是他们都先执行接收操作而不是发送操作,那么这两个进程就会因为无法接收数据而一致等待,如果没有外部干预,他们就会永远等待

#include 
#include
#include  
#include 
// determine the size of the array needing itering
#define N 100
// define the num of processes
#define X 4
// know the size of the array each process has
#define myarysize N / X
using namespace std;
int main(int argc, char* argv[])
{
	int n, myid, numprocs;
	int up, down;
	int opt;
	int i, j;
	// define the num of iterations 
	int nsteps = 1000;
	double prev[myarysize + 2][N + 2], curr[myarysize + 2][N + 2], gather_arr[N][N + 2], temp[myarysize][N + 2];
	MPI_Datatype  onerow;
	MPI_Status  status;
	MPI_Init(&argc, &argv);
	MPI_Comm_rank(MPI_COMM_WORLD, &myid);
	// initialize all arrays
	for (int i = 0; i < N; i++)
	{
		for (int j = 0; j < N + 2; j++)
		{
			if (i < myarysize)
				temp[i][j] = 0;
			gather_arr[i][j] = 0;
		}
	}
	for (int i = 0; i < myarysize + 2; i++)
	{
		for (int j = 0; j < N + 2; j++)
		{
			prev[i][j] = 20.00;
		}
	}
	if (myid == 0)
	{
		for (int j = 0; j < N + 2; j++)
		{
			// 将第一行的大约三分之一到三分之二之间的位置设置为100,其他设置为20
			if (j > 0.3 * (N + 1) && j < 0.7 * (N + 1))
			{
				prev[0][j] = 100.00;
			}
		}
	}
	MPI_Type_contiguous(N + 2, MPI_DOUBLE, &onerow);
	MPI_Type_commit(&onerow);
	int begin_row = 1;
	int end_row = myarysize;
	for (n = 0; n < nsteps; n++)
	{
		if (myid < 3) {
			MPI_Send(&prev[myarysize][0], 1, onerow,
				myid + 1, 1000, MPI_COMM_WORLD);
			MPI_Recv(&prev[myarysize + 1][0], 1, onerow,
				myid + 1, 1000, MPI_COMM_WORLD, &status);
			
		}
		if (myid > 0) {
			MPI_Send(&prev[1][0], 1, onerow,
				myid - 1, 1000, MPI_COMM_WORLD);
			MPI_Recv(&prev[0][0], 1, onerow,
				myid - 1, 1000, MPI_COMM_WORLD, &status);
		}
		for (i = begin_row; i <= end_row; i++)
		{
			for (j = 1; j < N + 1; j++)
			{
				curr[i][j] = (prev[i][j + 1] + prev[i][j - 1] + prev[i - 1][j] + prev[i + 1][j]) * 0.25;
			}
		}
		for (i = begin_row; i <= end_row; i++)
		{
			for (j = 1; j < N + 1; j++)
			{
				prev[i][j] = curr[i][j];
			}
		}
	}/* 迭代结束*/
	 // 用一个临时数组存放这些更新完的数组(去掉首行和末行,因为这两行是边界)
	for (int i = begin_row; i <= end_row; i++)
	{
		for (int j = 0; j < N + 2; j++)
		{
			temp[i - 1][j] = prev[i][j];
		}
	}
	MPI_Barrier(MPI_COMM_WORLD);
	MPI_Gather(&temp, myarysize * (N + 2), MPI_DOUBLE, &gather_arr, myarysize * (N + 2), MPI_DOUBLE, 0, MPI_COMM_WORLD);//需要单独在外面
	MPI_Type_free(&onerow);
	MPI_Finalize();
	if (myid == 0)
	{
		// output the result to the csv file
		std::ofstream myfile;
		myfile.open("finalTemperatures.csv");
		for (int p = 0; p < N + 2; p++)
		{
			for (int i = 0; i < N + 2; i++)
			{
				std::ostringstream out;
				out.precision(8);
				if (p == 0)
				{
					if (i > 0.3 * (N + 1) && i < 0.7 * (N + 1))
						myfile << "100" << ", ";
					else
						myfile << "20" << ", ";
				}
				else if (p == N + 1)
					myfile << "20" << ", ";
				else
				{
					out << gather_arr[p - 1][i];
					std::string str = out.str(); //从流中取出字符串 数值现在存储在str中,等待格式化。
					myfile << str << ", ";
				}
			}
			myfile << "\n";
		}
		myfile.close();
	}
	return 1;
}

2.2 无死锁版本2.0通用版使用指南【如果使用高级通用linux版本请阅读下文】

加载gcc(表示加载相应的模块,如果没有,请下载)

mpic++.cpp -o a.out

-np 16 ./a.out -N 256 -I 10000 (-np 16表示分配的处理器数量为16)

#include 
#include
#include  
#include 
// determine the size of the array needing itering
#define N 100
// define the num of processes
#define X 4
// know the size of the array each process has
#define myarysize N / X
using namespace std;
int main(int argc, char* argv[])
{
	int n, myid, numprocs ;
	int up, down;
	int opt;
	int i, j;
	
	// define the num of iterations 
	int nsteps = 1000;
	char  optstring[] = "N:I:";  // 分别代表-N, -I命令行参数,其中带:的表示参数可以指定值
	double prev[myarysize + 2][N + 2], curr[myarysize + 2][N + 2], gather_arr[N][N + 2], temp[myarysize][N + 2];
	MPI_Datatype  onerow;
	MPI_Status  status;
	MPI_Init(&argc, &argv);
	MPI_Comm_rank(MPI_COMM_WORLD, &myid);
	// initialize all arrays
	
	for (int i = 0; i < N; i++)
	{
		for (int j = 0; j < N + 2; j++)
		{
			if (i < myarysize)
				temp[i][j] = 0;		
			gather_arr[i][j] = 0;
		}
	}
	
	for (int i = 0; i < myarysize + 2; i++)
	{
		for (int j = 0; j < N + 2; j++)
		{
			prev[i][j] = 20.00;
			
		}
	}
	if (myid == 0)
	{
		for (int j = 0; j < N + 2; j++)
		{
		    // 将第一行的大约三分之一到三分之二之间的位置设置为100,其他设置为20
			if (j > 0.3 * (N + 1) && j < 0.7 * (N + 1))
			{
				prev[0][j] = 100.00;
			}
		}
	}
	MPI_Type_contiguous(N + 2, MPI_DOUBLE, &onerow);
	MPI_Type_commit(&onerow);
	up = myid - 1;
	if (up < 0) up = MPI_PROC_NULL;
	down = myid + 1;
	if (down > 3) down = MPI_PROC_NULL;
	int begin_row = 1;
	int end_row = myarysize;
	for (n = 0; n < nsteps; n++) 
	{
		MPI_Sendrecv(&prev[1][0], 1, onerow, up, 1000, &prev[myarysize + 1][0], 1, onerow, down, 1000, MPI_COMM_WORLD, &status);
		MPI_Sendrecv(&prev[myarysize][0], 1, onerow, down, 1000, &prev[0][0], 1, onerow, up, 1000, MPI_COMM_WORLD, &status);
		for (i = begin_row; i <= end_row; i++)
		{
			for (j = 1; j < N + 1; j++)
			{
				curr[i][j] = (prev[i][j + 1] + prev[i][j - 1] + prev[i - 1][j] + prev[i + 1][j]) * 0.25;
				
			}
		}
		for (i = begin_row; i <= end_row; i++)
		{
			for (j = 1; j < N + 1; j++)
			{
				prev[i][j] = curr[i][j];
			}
		}
			
			
	}/* 迭代结束*/
	
	 // 用一个临时数组存放这些更新完的数组(去掉首行和末行,因为这两行是边界)
	for (int  i = begin_row; i <= end_row; i++)
	{
		for (int  j = 0; j < N + 2; j++)
		{
			temp[i - 1][j] = prev[i][j];
		}
	}
	MPI_Barrier(MPI_COMM_WORLD);
	//std::cout << "进程号为"< 0.3 * (N + 1) && i < 0.7 * (N + 1))
						myfile << "100" << ", ";
					else
						myfile << "20" << ", ";
				}
				else if (p == N + 1)
					myfile << "20" << ", ";
				else
				{
					out << gather_arr[p - 1][i];
					std::string str = out.str(); //从流中取出字符串 数值现在存储在str中,等待格式化。
					myfile << str << ", ";
				}
			}
			myfile << "\n";
		}
		myfile.close();
	}
	return 1;
}

2.3 高级版本3.0【带输出时间】,同时采用命令行参数的形式来确定进程数、矩阵维数、迭代次数。 可以看到改进版中我把对应的数组从静态数组改成了动态数组。 数组,这是因为静态数组不允许初始值为变量,只能是常量,但是从命令行获取迭代次数和矩阵维数时,只能传入动态变量改进版中,可以看到使用函数时,使用了两个一维数组,这里必须是一维的,因为一维数组中的地址空间是连续的,所以方便收集起来,二维的就不一定了。 linux下如何使用

-np 16 ./a.out -N 256 -I 10000 (-np 16 表示处理器数,也表示进程数,-N 256 表示矩阵维度为256,-I 10000 表示矩阵维数为256迭代次数为 10000)

#include 
#include
#include  
#include 
#include
#include 
//#include 
//#define N 100
//#define myarysize N / 4
using namespace std;
int main(int argc, char* argv[])
{
	// myid defines the NO of each process, while numprocs marks the total number of processors
	int n, myid, numprocs ;
	// the border process ranked 0 and (numproc - 1)
	int up, down;
	int i, j;
	// determine the size of the array needing itering
	int N;
	// know the size of the array each process has
	int myarysize ;
	// define the num of iterations 
	int nsteps;
	
	MPI_Datatype  onerow;
	MPI_Status  status;
	MPI_Init(&argc, &argv);
	MPI_Comm_rank(MPI_COMM_WORLD, &myid);
	MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
	
	// judge the args
	if (argc < 5)
	{
		cout << "Invalid parameters, please check your values." << endl;
		return -1;
	}
	else
	{
		if (atoi(argv[2]) <= 0 || atoi(argv[4]) <= 0)
		{
			cout << "Invalid parameters, please check your values." << endl;
			return 0;
		}
		if (atoi(argv[2]) > 256 || atoi(argv[4]) > 10000)
		{
			cout << " the first param is up to 256 and the second up to 10000." << endl;
			return 0;
		}
		
	}
	
	// initialize all arrays claimed above	
	N = atoi(argv[2]);
	//N = 256;
	//nsteps = 10000;
	nsteps = atoi(argv[4]);
	myarysize = N / numprocs;
	vector<vector<double>> prev(myarysize + 2, vector<double>(N + 2));
	vector<vector<double>> curr(myarysize + 2, vector<double>(N + 2));
	// define the temp_1d designed for saving the outcome of iterations
	double* temp_1d = (double*)malloc(sizeof(double) * myarysize * (N + 2));
	// this 1d array is used for collecting data coming from all processes
	double* gather_arr = (double*)malloc(sizeof(double) * N * (N + 2));
	for (size_t i = 0; i < N * (N + 2); i++)	gather_arr[i] = 20.00;
	for (int i = 0; i < myarysize + 2; i++)for (int j = 0; j < N + 2; j++)	prev[i][j] = 20.00;
	if (myid == 0)
		for (int j = 0; j < N + 2; j++)
			if (j > 0.3 * (N + 1) && j < 0.7 * (N + 1))
				prev[0][j] = 100.00;
	// this is a kind of new datatype assembling the concrete length of data we want to transfer from process to process
	MPI_Type_contiguous(N + 2, MPI_DOUBLE, &onerow);
	MPI_Type_commit(&onerow);
	
	up = myid - 1;
	if (up < 0) up = MPI_PROC_NULL;// when the current process is the number 0 process, it needn't transfer data to the number -1 process,and hence set NULL_process
	down = myid + 1;
	if (down > (numprocs - 1)) down = MPI_PROC_NULL;// when the current process is the NO (numproc - 1) process, it needn't transfer data to the number (numproc) process,and therefore set NULL_process
	int begin_row = 1;
	int end_row = myarysize;
	
	// timestamp 1 - marking the start time of iterations
	//struct timeval t1, t2;
	//gettimeofday(&t1, 0);
	clock_t start, end;
	start = clock();
	for (n = 0; n < nsteps; n++) 
	{
		MPI_Sendrecv(&prev[1][0], 1, onerow, up, 1000, &prev[myarysize + 1][0], 1, onerow, down, 1000, MPI_COMM_WORLD, &status);
		MPI_Sendrecv(&prev[myarysize][0], 1, onerow, down, 1000, &prev[0][0], 1, onerow, up, 1000, MPI_COMM_WORLD, &status);
		for (i = begin_row; i <= end_row; i++)
		{
			for (j = 1; j < N + 1; j++)
			{
				curr[i][j] = (prev[i][j + 1] + prev[i][j - 1] + prev[i - 1][j] + prev[i + 1][j]) * 0.25;
			
			}
		}
		for (i = begin_row; i <= end_row; i++)
			for (j = 1; j < N + 1; j++)
				prev[i][j] = curr[i][j];
			
			
	}/* iteration over*/
	// use a 1d temporary array to save these data that need removing the first and the last line(because these two lines are borders used in exchange with other processes)
	int k = 0;
	for (int  i = begin_row; i <= end_row; i++)
	{
		for (int  j = 0; j < N + 2; j++)
		{
			temp_1d[k] = prev[i][j];
			k++;
		}
	}
	
	MPI_Barrier(MPI_COMM_WORLD);
	if (myid == 0)
	{
		// print the time
		end = clock();
		double interval = (double)(end - start) / CLOCKS_PER_SEC; 
		// timestamp2 - marking the end of iterations
		//gettimeofday(&t2, 0);
		//double time = (1000000.0 * (t2.tv_sec - t1.tv_sec) + t2.tv_usec - t1.tv_usec) / 1000.0;
		printf("Time to generate:  %4.2f ms \n", interval * 1000);
	}
	// notice : please use 2 1D arrays to gather all data from all processes, otherwise there must be an unknown error caused by pointer
	MPI_Gather(temp_1d, myarysize* (N + 2), MPI_DOUBLE, gather_arr, myarysize* (N + 2), MPI_DOUBLE, 0, MPI_COMM_WORLD);
	MPI_Type_free(&onerow);
	MPI_Finalize();
	
	// back to the root process
	if (myid == 0)
	{
		// output the result to the csv file
		std::ofstream myfile;
		myfile.open("finalTemperatures.csv");
		for (int p = 0; p < (N + 2) * (N + 2); p++)
		{
			
			std::ostringstream out;
			out.precision(8);
			if (p % (N + 2) == 0 && p != 0)
			{
				myfile << "\n" ;
			}
			if (p < (N + 2))
			{
				if (p > 0.3 * (N + 1) && p < 0.7 * (N + 1))
					myfile << "100" << ", ";
				else
					myfile << "20" << ", ";
			}
			else if (p >= (N + 2) * (N + 1))
				myfile << "20" << ", ";
			else
			{
				out << gather_arr[p - (N + 2)];
				std::string str = out.str(); //format
				myfile << str << ", ";
			}		
		}
		myfile.close();
	}
	
	free(gather_arr);
	free(temp_1d);
	std::vector<vector<double>>().swap(prev);
	std::vector<vector<double>>().swap(curr);
	return 1;
}


TAG标签:解方程小程序 

声明:本文来自投稿,不代表皇冠登一出租罗索西丝立场,如若转载,请注明出处:https://www.jojdljf2.com/news/show395.html 若本站的内容无意侵犯了贵司版权,请给我们来信,我们会及时处理和回复。

相关新闻

相关案例

X微信咨询

截屏,微信识别二维码

微信号:dianzana1989

(点击微信号复制,添加好友)

  打开微信

微信号已复制,请打开微信添加咨询详情!